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ITERATIVE METHODS FOR PLASMA-SHEATH CALCULATIONS-
APPLICATION TO SPHERICAL PROBE

L. W. Parker
Mt Aubum Research Associates, Inc.
and
E. C. Suflivan
Goddard Space Flight Center

INTRODUCTION

The term plasma-sheath problem denotes any boundary-value problem described by the
Poisson and steady-state Boltzmann equations. The charge density is obtained through
solutions of the Boltzmann equation, assuming a fixed electrostatic potential distribution:
the potential in turn is cbtained by a solution of the Poisson equation assuming a fixed
charge density distribution. Hence. the solutions of the two equations must be self
consistent. The solutions of the Boltzmann equation are the phase-space densities of jons
and electrons, which in turn lcad to the respective particle densities through moment
integrals. When the mean free path is finite, the phase-space density varies along the
particle trajectories. When the mean free path is infinite, the Boltzmann equation becomes
the Vlasov equation, where the phase-space density does not vary along a trajectory. Even
in this case one must still trace the complete trajectory in order to evaluate the phase-space
density. Hence, the charge density is a complicated functional of the potential distribution;
that is, it depends on the potential distribution elsewhere in space, and the Poisson-
Boltzmann (or roisson-Vlasov) probiem may be said to be nonlocal.

We are concerned in the present work s ith the solution of plasma-sheath Poisson-Vlasov
systems. In general, one must formulate the probiem on a grid and use iterative numerical
techniques (Poisson-Vlasov iteration) to obtain self-consistent solutions.* Physicists have
devised iterative methods for the numerical solution of particular plasma-sheath problems,
such as those of probes (References 1 to 7), high-velocity satellite wakes (References 8 to
11), ion engines (Reference 12), and plasma diodes (References 13, 14). Among the
papers cited, References 5 to 7 and 9 refer to a theoretical analysis of the iteration method;
these analyses were relatively specialized to the specific problem. Although it is

perhaps obvious that the various plasma-sheath problems exemplified by References 1 to
14 are reiated, their interrelationship and the theoretical basis of the iterative methods
presented have not been studied systematically. It is felt that such a study would be
valuable to workers contemplating new sheatl. calculations, by helping to provide a basis

*An alternate approach is that of time-sequential solution (direct computer simulation), although to date this
has proved feasible only for problems with simple boundary conditions (for example, see papers by R, W. Hockney
and others 1n Methods in Computational Physics, 9, B. Alder, S. Fernbach, and M. Rotenberg, eds., Academic Press,
N.Y., 1970). The spherical probe problem has been approached this way by N, Albers (Stanford University SU-IPK
Rpt. No. 499, December 1972)



for estimating computer costs. Preliminary results of the present investigation have been
reported in Reference 15.

It should be noted that mathematicians have investigated the formal theory of iterative
processes for general elliptic boundary-value problems (References 16 to 21). but have not
considered their practical applicati~ns to the class of problems associated with plasma
sheaths.

A uniqug problem arises when one boundary surface is at infinity, such as in probes
(References 1 to 7) and satellite wakes (References 8 to 11). The outer boundary condi-
tion must be simulated on the computer by a necessarily artificial finite condition (for
example, an assumed linear condition on the potential and/or its gradient on the surface
of a large box surrounding the region of interest). This document deals primarily with such
problems. In it are investigated, both by theoretical analysis and computer experiments,
two iterative algorithms with respect to stability and number of iterations required. The
two algorithms are complementary in that the first one depends primarily on the outer
boundary condition and only slightly on the mesh interval, whereas the second one is only
siightiy affected by the outer boundary condition and depends pnmanly on the mesh
interval. The first algorithm (Equation (2)) is the prototype of tha. which has been used
apparently by most physicists (References 1, 3, 4, 6, 7, 9). but which has onlv recently
begun to interest mathematicians (Reference 16). The second algorithm (Equation (7))
has received little practical but much mathematical attention (References 18, 19, 22, 23).

To obtain an adequate quantity of empirical numerical data with a relatively small computer
expenditure, a one-space-dimensional model problem has been chosen: a spherical probe

in a collisionless monoenergetic plasma (References 1, 2, 5, 7, 24). Previously, efficient
numerical methods that take maximum advantage of svmmetrv (References 1 and 5) have
been applied to this one-dimensional problem. In this paper the solution is obtained by
applying a general iterative method that is insensitive to both s /mmetry and the number

of dimensions,

FIRST ALGORITHM

It is assumed that in an arbitrary three-dimensional problem the partial differential Poisson
equation has been replaced by a discrete approximation, that is, by a set of difference
equations based on a chosen grid (and including a chosen outer boundary condition). The
term solution vecior is defined as that vector whose components are the values of the
poter:tial at the grid points. This solution vector satisfies a matrix equation of the form

Lo =F(s) (1

where L is the disc_r’ete analog of tne Laplacian operator, 3 is the solution vector (potential
distribution), and F consists partly of the negative of the charge-density vector whose
components are_ the values of the charge density at the grid points. Ig’ addition, each
component of F generally depends on more than one component of ¢. It is assumed that



a numerical procedure is availatle that is capable of computing f?) when 8’ is given; that is,
the procedure obtains so_lptions of __Ehe Boltzmann equation leading to the charged-particle
densities and the vector F. Thus, F formally can be considered as resulting from a non-
linear operationon ¢ . *

The first of the two iterative algorithms (Equation (2)) will be discussed in detail:
L6, = aF@,)+ (1) L4, )

In this algorithm, ;n represents the n-th iterate for the vector —d; n denotes the iteration in-
dex. and « is a positive scalar relaxation parameter between zero and unity that couples tor
mixes) successive iterates. (More generally, & can be iionstationary (dependent on n), or

a diagonal matrix (dependent on position) (Reference 1).) When « is 1, there is direct
iteration, which is the discrete analog of the well known Picard method of successive
approximations for nonlinear two-point boundary-value problems (References 17, 18,

20, 21). When « is small, previous iterates are weighted heavily on the right-hand side of
(2). It will be shown that the iteration progerties of (2) depend strongly on the boundary
condition. To study; the growth of errors, ¢ | ill denote an ertor veitor (defined as the
difference between ¢ . and the true solution vector). Assuming that F is differentiable,
first-order linearization analysis of (2) leads to a matrix relation between the n-th ana
(n+1)-th error vectors:

-> -

€psy =Me_ 3)
where the error propagator matrix M is defined by

M=l-a+al 4)

In (4), L* 15 the nverse of tivs operator L, and J 1s the Jacobian maimx _gf partial
derivatives of the comprnints of F with respect to the components of ¢. “herefore, th?
iteration either converges or diverges dep.2nding on whether the spectral radius of M is
less than or greatzr thar umity. Because ike Jacobian matrix is difficuit to represent
analytically, its effects are studied in a crude manner by introducing an equivalent scalar
parameter dF/d¢. For the situations of interest here, where « must be smail, dF/d¢ plays
the role of a Lipschitzian constant (Chapter 9 of Reference 21 or p. 2 of Reference 23).
This is probably justified as a zero-order approximation if the range of the eigenvalues of
the Jacobian matrix is small ccmparcd with the range of the eigenvalues of L', (Some¢ 4
posteriori support will be given in the section that discusses the second algorithm.)

* The example of a spherical electrostatic probe is treated in detaii in the next section,



For simplicity, a three-dimensional Dirichlet boundary-value problem contained within a
large cube that is divided into N mesh intervals of uniform width h along each of the three
diinensions is assumed. If the simplest centered seven-point difference scheme is used for
L, the eigenvalues of L are given hy simple trigonometric functions (for exampie. by
generalizing Reference 19 or p. 230 of Reference 22 to three dimensions), and the triply-
indexed eigenvalues of M become (Appendix A of Reference 6):

h?\ (dF , im knm e |7
A= 1-a-al—) (=) ]sn + sin® — + sin?
i a4/ \ag /1 N 2N 2N (3)
G k.2=1...... ,N-1)

According to (5), in the «, A plane, all eigenvalues lie within a fan of straight lines with a
common vertex (a, A) = (0. 1). Let o denote the spectral radius of M, that is, the largest
eigenvalue magnitude. Then, as shown in Figure 1, ¢ is less than unity and the iteration
converges for a restricted range of a between zero and a critical value a« . which is controlled
by the largest eigenvalue of L'!. The factor by which the error is reduced after n iterations
is of the order of ¢", which for o close to unity is gi. .. approximately by the expression
[1-n(1-¢})}. Fora> a.,o0> 1, and the iteration theoretically diverges. The spectral radius
o(a) i minimized at the optimum value LR which gives the maximum rate of convergence:
the minimum number of iterations. In the range between zero and Qe the rate of con-
vergence increases with increasing «. In this range, the dominant eigenvalue is given by the
largest indices in (5) and is positive; hence, the iteration is monotone (that is, the error

does not change sign in successive iterations). Fora > %y pe the dominant eigenvalue is
given by the smallest indices in (5) and is negative; therefore, the iteration is oscillatory

and the error changes sign in successive iterations. For o>« , the iteration not only
diverges but diverges in an oscillatory fashion.

In problems with only one or two dimensions, the eigenvalues are given by an equation
similar to (5), but which has only one or two terms in the parentheses instead of three.
For N >> 1, which is usually ihe case (Appendix A of Reference 6):

1+Cl(dFNzhz N 6
a = -
; W 7 (6)

where C is the reciprocal of the number of dimensions, and K is unity for Dirichlet condi-
tions. Note that o, depends on Nh rather than on h (p. 159 of Reference 21), where Nh

is a linear dimension across the grid, say in Debye lengths. Hence, if the linear dimensions
of the grid are large in Debye lengths, so that Nh is large, then (6) shows that the range of
o within which the iteration converges becomes small, that is, is bounded between zero and
a, v (Nh)2. In fact, a qualitatively similar relation between convergence and grid dimen-
sions has been observed by Laframboise (Reference 1), Parker (References 6 and 7), and
Parker and Whipple (Reference 3) on probe problems (Reference 15), and by Call
(Reference 10) and Maslennikov and Sigov (Reference 9) on the satellite wake problem.
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Figure 1. Spectral radius of iteration matrix for linearized problem.

Also, if the charge density has a singular character, as in the spherical probe problem to be
discussed later, dF/d¢ can become large, thus forcing the reduction of « still further.
Finally, it is observed that as (dF/d¢)(Nh)? becomes large, the following conditions prevail:

] &, ot tends to coincide with a, while both become small.

® The iteration is monotone, ard, for a within the convergent range, the spectral
radius of M is controlied by the smallest eigenvalue of L and is given by 1-Aa
where A = 1 + C (dF/d¢)h?/4).

® Because Ax << 1, the reduction of error after n iterations is approximated by
the expression exp ( -Ana).

® For a even slightly larger than «_, the iteration diverges rapidly.

Incidentally, Lettenmeyer’s criterion (References 17, 18, and pp. 40 and 143 of Reference
21; the authors were not able to locate Lettenmeyer’s original paper) for the convergence
of the Picard procedure in the one-dimensional continuous Dirichlet problem follows
immediatelv from (5) with a = 1 and N >> 1. That is, the spcctral radius is then given by
N2h?|dF,d¢l/m?, which must be less than unity for convergence. This is the Lettenmeyer
criterion, where |dF/d¢] is actually a Lipschitz constant.

To evaluate the role played by boundary conditions, a two-surface boundary-value problem
with a Dirichlet condition on one boundary surface and a floating linear relation between
the potential and its gradient on the oither boundary is considered. This has been employed
in probe problems to simulate the condition at infinity (References I, 3to 7, 15). The
largest eigenvalue of the reciprocal matrix L-! is increased by a factor K > 1 which appears
in (6). "t can be shown, by analyzing the roots of the appropriate determinantal equation
(for ea. .aple, Equation (1.34*) of Reference 25) fur a one-dimensional problem with a



Dirichlet condition (¢ = 0) at one end and a floating condition (¢' = -k¢) at the other end,
that K = #2/z2, where z is the root of kNh = ztan(z-n/2) lying in the range /2 <z < 7.
That is, K goes from unity to 4 as k goes from infinity (¢ = 0) to zero (¢’ = 0). Thus. the
use of a floating condition tends to require smaller values of « and correspondingly more
iterations as opposed to the Dirichlet condition. The value of dF/d¢ may change in such a
direction as to cancel this effect. It has been observed in numerical experiments with the
spherical probe (Table 1) that in some cases floating conditions converge more rapidly,
and in other cases more slowly than fixed Dirichlet conc.tions. The value of dF/d¢ is not
usually predictable and is considered to be an empirica'ly determined parameter. Never-
theless, it is a useful parameter because. from problem to problem, it varies more slowly
than a (Table 2).

The following numerical experiments with the spherical probe model also snc ald be rele-
vant to three-dimensional problems. Preliminary results were reported in Reference '5.

SPHERICAL PROBE

The problem of the spherical electrostatic probe is used as the modei for computational
experiments involving tests of three types of numerical boundary conditions simulating

the condition at infinity, and two types of Poisson-Vlasov iteration (the first and second
algorithms). In particular, the monoenergetic version of the probe calculation is used.
which assumes that all attracted particles have the same nonvanishing total energy Eo'
Theoretical calculations of current-voltage characteristics for this model, with repelled
particles assumed to be described by a Boltzmann factor (that is. an exponential function
of local potential), have been made by Bohm et al. (Referencc 24), Bernstein and
Rabinowitz (Reference 2), and Laframboise (Reference 1). A similar model, but one

using repelled as well as attracted monoenergetic particles, has been used by Guderley
(Reference 5) (based on unpublished work by G. Medicus), and is the model discussed in
this section. These monoenergetic models are physically justified on the basis that the
problem can be solved numerically for arbitrary energy distributions (usually a Maxwellian)
by summing over moncenergetic contributions (that is, by energy-quadratures). Such
calculations have been done independently by Laframboise and Parker (unpublished work)
duplicating results obtained earlier by Laframboise (Reference 1), who used a special inethod
for Maxwellian energy distributions. Another justification is based on computed solutions
that show that as the probe potential becomes large the monoenergetic attracted-particle
current becomes identical to the Maxwellian current.

Figure 2 indicates the parameters of the probe problem, with ¢ denoting dimensionless
potential in units of E /e, where E, is the singular ene-gy (the same for both attracted and
repelled particles, consisting of electrons and singly-charged ions with charge e). The unit
of length is (Eo /21'm0e2 )'/2, as in Reference 5, that is, larger than the usual Debye length
by a factor of \/T The range of r is between T (dimensionless probe radius, where the
potential is ¢p) and r,, the dimensionless outer-boundary radius.
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Figure 2. Spherical collisionless monoenergetic probe model: Artificial

boundary conditions are established to simulate boundary condition at

infinity (ry, is moved outward until current does not change).
The equations that may be used for a monoenergetic problem in which the ions and elec-
trons both have the same energy are presented in condensed form as follows. (See
References 5, 7, and 24 for derivations and more detailed discussions.)

In the Poisson equation

92—¢+_(_12—F( ‘—2 2
dr® rdr 9)=2n(-4) - 2n(9)

where n(-¢) and n(¢) denote dimensionless electron and ion density, respactively. These
densities are functionals of 4 functior g(r), defined by

g(r)=r*(1-9)

where g(r) is proportional to the square of the largest angular momentum or impact
parameter which a particle can have at puint r, and is such that there is a turming-point at
1 (Section 4.2 of Reference 24). Minima in g, namely g, and g_ , correspond to maxima
in the effective potential and govern the density and current as seen in the following
equations:

® [fg(r) > 0 for I <r<r,, define g (r) = Min g(", gy = Min g(r) = Min g, ()
r>r r r
Then

1
n(¢)=;.[1-¢ 1+ f1-8m o 1B

g V 8



° lfg(r)>0forrp <1, <r<r,, then
B =0

n¢)=0 forr< To

"(¢)=~/1-¢[1 - ’1 -%]forro<r<!h

¢ Dimensionless current density is

_J_- = g_i".‘ (i, = current at zero probe potential)

Finding the minima g, and g (where g, is the lowest value of g ahead of a fixed point r,
and g  is the minimum over all r) is an operation easily performed and ideal for computer
calculations when the ¢-values are defined at a set of grid points. The special radius r is
defined as the smallest radius such that g is positive for all r > r, and is the largest radius
for which 1 ~ ¢ assumes negative values. In all cf the cases treated here, the g(r) for the
correct solution has a single minimum at the absorption radius r_ as shown for the
attracted particles in Figu, 3. A typical function g(r) for the repelled particles is also
shown in Figure 3 by the dashed curve, where there is a radius 1, such that g is negative for
r<r,. For intermediate potential distributions occurring during iterative cycling, the
function g(r) may become very complicated, but the above formulas take into account any
possible variation. The formulas for monoenergetic particles are directly useful for arbi-
trary polyenergetic distributions by means of simple quadratures.

ATTRACTED PARTICLES

] P LGN T
”
7 \ REPELLED ?PARTICLES

d
d

Figure 3. Special case of a nonmonotor.ic function g{r} with a
single minimum at re for attracted particles. For repelied
particles, g{r) may change sign (as at o in dashed curve).



The quantity of intcrest is the current of ions or electrons collected by the probe. Since
r, caianot be infinite, the question is how large must r, be in order to simulate sufficiently
weil the boundary condition at infinity where ¢ vanishes. It is found in practice that as fy
increases, the current wil: eventually level off and become independent oir . It is also
found tnat increasing the value of r, causes the computer cost per solution to incic ‘e,
since 1nore grid peoints would be required to control the truncation error, and the number

of iterations would tend to increase in accord with the analysis of the preceding section.

Several different types of bounda-y conditions may be imposed at r_ . (iuylor (Reference
26) has studied various types of c¢onditions with respect tc how well they simulate the
boundary condition at infinity; the effect of the conditinn on iterations was not studied.)

Three types of boundary condition studied in the present work ire illustrated in Figure Z;
(a) the zero-potential fixed condition, which has been used aa hoc for sateliite wake calcu-
lations (References 8 to 11); (b) tne inverse-square-iaw floating condition, which represents
the proper asymptotic behavior tor the probe problem, and so has been used effectively
for spherical probe calculations (References 1 and 5). and (c) the zero-gradient floating
condition. The zero-potential and zero-gradient conditions represent opposite-extreme
conditions, General li.'ear relations, including inverse-sq’tare and exponential laws, should
give results lying between these extremes. Therefcre, the three conditions studied are
probably representative of the range of interest. These conditions have different properties
with respect to the ieveling-off value of r, and the number of iterations required for
convergence; it is of interest {0 derermine which condition results in the smallest net
computer time per solution ’herefore, the optimum values of 1 and the iteration
parameters for both the first and second algorithms will be determiied.

Four physical problems have teen studied: probe radius T, equal to 10 and 100 uni

(14.1 and 141 Debye lengths), with probe potential (bp equai to 10 and 100 units Fa1 ac.
probe radius. The extreme values of probe radius and potential were chosen because they
are physically interesting and also numerically interesting, that is, likely to be costly in
computer time. For each probler, all three boundary conditic s were investigated to find
the smallest boundary radius r, consistent with stationary current, and the smallest number
of iterations required for the first algorithm (Equation (2)). To compare numbers of
iterations, the iteration was always started with the Laplace solution as a standard initial
estimate. The itcration was continned until successive iterates, if they converged, differed
by less than one part in 10° in the current density.

Resul’s for the 12 cases are shown in Table 1. For each case, the table gives the vclues of
four quantities: the minimum r, for stationary current, the optimum (essentially the
critical) value of o, the minimum number of iterations n_. ., and the approximate time in
seconds on an IBM 7094 computer. (Em;j.rically, the time was about one ms/grid point/
iteration.) For all but one case the mesh interval was b=1, yielding the values shown in
Table 1 of dimensi :nless current density j/j, . with a truncation error of the order of a
few tenths of one percent, as indicated by the numbers in parentheses. For the zero-
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potential boundary condition and for r, = ¢p = . the smallest value of h used was 2.5
because of computer-time limitations. The truncation error was estimated by running
with successively smaller values of h (down to 0.1). The computer time in each case is
proportional to the product of n and the nu:nber of grid points. (This is because a direct
elimination method was used to solve the tridiagonal system of Poisson difference equa-
tions, so that the time per grid point is a constant for that part of the calculation.)

The boundary conditions may be assessed with respect to computer economy’ as follows.

® For ¢p = 10 (large bu’ not extremely large potential), the two floating conditions
are comparable.

® For ¢p = 100 (extremely large potential), the inverse-square floating condition is
superior to the zero-gradient floating condition.

® For r,= 10 (large but not extremely large radius), the fixed condition is
comparable or superior to both floating conditions.

® For = 100 (extremely large radius), the floating conditions are superior
to the fixed condition.

For large probe potential or probe radius, the fixed condition has the peculiar property
that, for a fixed «, as r, increases, the number of iterctions goes ur and then down again.
For Case 10, as noted in Table 1, convergence was essentially impossible to obtain when
r, was in a certain range of values. The floating conditions were free of such difficulties.

Table 2 presents the empirical values of n/(Nh)?, a(Nh)?, K, and (dF/d¢) obtained fr~m
(6), where Nh=r, - r- Throughout the table, the ratios of the largest to the smallest
values of n/(Nh)?, a(Nh)?, and (dF/d¢) are 9, 15, and 12, respectively. These factors are
much smaller than the variation of a in Table 1, that is to say, by a factor of 300. For

9 out of the 17 cases. dF/d¢ has values between about | and 3. In Cases 3, 6, and 10,
4F/d¢ has values of about 5, 7, and 16, respectively. The occurrence of these iarger
values is probably connected with the existence of a singularity in the derivative of the
density as a function of potential (where a radicand vanishes).

If the error reduction by iteration is described by the expression exp (-Bna), the em -irical
coefficient B is found sometimes to be less thar unit,, u» contradiction to the linearization
theory. This is probably due to the closeness of the spectral radius ¢ to unity, so that 1-¢
is sensitive to ~~all perturbations in the theory. For example, the neglect in the spread of
the cigenvalues of the Jacobian matrix J could lead to such a perturbation. This affects
the number of iterations, However, the critical value of a is much less affected. Indeed,
consistent with the theory, a_ is found to be a decreasing function of Nh, and is insensi-
tive to h for a given Nh.

Aside from the properties of the iteration process, Table 1 shows that the minimum value
of r, is larger for the fixed condition than for the two floating conditions, but is independ-
ent of which floating condition : used. This is consistent with References 1 and 26.
Moreover, the minimum r, is found o be independent of h (not indicated in Table 1).

11
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As a result of the ahove findings. the tollowing procedure is recommended if OTdcT S 3ave
computer tim2 when solving similar problems for any chosen boundary condition: First.
minimum values of r, and critical values of a shiould be found while using large values of
h. that is, few grid points. Then h can subsequently be reduced in order to diminish
truncation citor without the necessity of further changesin r, and a. It is not yet clear
how to choose the proper boundary conditior: to be used for an arbitrary problem.

An interesting but unjustified assertion has been made by Maslennikov and Sigov
(Reference 9) in connection with their use of (2) to iterate the high-velocity satellite
wake problem. To ensure stability. the volume of the grid (the region of interest) must be
smaller than a number proportional to the ion encrgy. The present analysis defined Nh
to be an appropriate linear dimension of the grid in Debye lengths, and found that (Nh)?
must be iess than a certain constant for a fixed . It X represents the appropriate hincar
dimension of the grid. and if the effective Debye length is based on the ion directed
kinetic energy Eo (rather than on the electron thermal energy k'I'), then (Nh)? is propor-
tional to X2/ E,. Hence. the criterion is that a cross-sectional area ( X2 rather than ihe
voiume X3 as stated in Reference 9) of the giid must be smaller than a number propor-
tional to EO: The characteristic energy is the larger of E0 ana kT. Thus. the criterion for
stahility requires that the dimension X be smaller than a certain number of effective
Debye lengths A*, where A¥ is defined by\/Eol41rnoe7 when E; >> kT (Reference 9).
and by VkT/4mn e? when E, < kT.

SECOND ALGORITHM

This section discusses the second algorithm:
L-»e,, =F@) - po, ™

where p is a scalar relaxation parameter. This extension of the Richardson method (p. 226
of Keterence 2., p. Y0 ot Reterence 23) has been studied in connection with midly
nonlinear elliptic equations (References 18 and 19). It wiil be seen thart the iteration
properties of {7) are essentially independent of the boundary condition. in coitiasi to {(2).
This is because the eigenvalues of L, which contain the boundary condition infoermation,
have a minor effect on the spectral radius of the iteration matrix M that relates successive
error vectors. By applying a linear:zation process to (7), similar to that applied to (2),

M=@-Ly"' (-5 (8)

where J is the Jacobian derivative matrix as in ¥4). (if the scalar parameter p i (7) were
replaced by the matrix J, the lin .ar iteration matrix M would vanish, resulting in a Newto-
nian-type process, that is, a discr 2te analog of quasi-linearization (Refercnce 20).) It is clear
that the eigenvalues of J play a crucial role in determining the eigenvalues of M. Assuming
the effect of L to be that of a perturbation, then to lowest order the eigenvalues of M are
approximated by

[
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p-k,
= — (9N
p')‘L
where A, is an eigenvalue of the Jacobian matrix J, and A, is an eigenvalue of the operator
L

It is assumed that the eigenvalues of J are all positive* and lie in the range (A} <A, <A,).
Also, under the conditions leading to (5), all of the A, are negative. Hence. for fixed p and
A, . the largest value of |A| occurs for the minimum value of -A, . which is given by

A, =72/(KN?h?) when N >> 1. Thus, if p is large compared with A, the spectral radius
of M, namely o, becomes independent of the eigenvalues of L and is approximated by

A
a=?2 i forp<)\2—.:)\‘ (10)
., M Ay + A
o—l—‘F forp>—-—2 an

Note that, considered as a function of 1/p, o(1/p) is qualitatively similar to o(a) piotted
in Figure 1. The minimum value of ¢, corresponding to the minimum number of
iterations, Is

)\2 — )\]
== 1 D)
Omm AZ + Al (lb)
which occurs when p is equal to the optimum value
Ay + )\
Pope =3 (3
When p exceeds the critical value p_ the spectral radius o exceeds unity, and the iter- on
diveroes, where
Pe = (14)
Therefore, if the eigenvalues of J are approximately equal (that is, A, ~ X, ), then
0pin << 1and Pope ™~ 2p, ~ A;. However, if A, <<A,,
AZ

Moreover, if ¢ is close to unity, then according to (11) the error after n iterations is
reduced approximately by the expression exp (-n\; /p).

*Just “iable on the basis of analytic forms approximating the space-charge density (Appendix A of Reference 6).
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Thus, empirical evaluation of Popt and p, from iteration experiments with our modc!
problem will give information regarding the eigenvalues of the matrix J for the , roblem.

A check can also b2 made on the assumptions leading to (5) and (9), and a direct
cuinparison of the iwo algorithms can be made. Presented in Table 3 are the results of
computations using the second algorithm for the same 12 problems presented in Table |
for the first algorithm. The minimum values of r, are the same as in Table 1 and are not
shown in Table 3. For each case, the table presents five quantities: the optimum value
Pope: the range of p containing the critical value p, . the minimum number n of iteratjons,
the approximate value of A, and the value of A\, = 1/A, (the dominant eigenvalue of -L'1).

It is evident from Table 3 that Poptr Pes and the minimum number of iterations are inde-
pendent of the boundary condition. Actually, for a given r, and ¢p, they depend only on
the mesh inicival h. 1ence, for a given truncation crror, governed by Ii, the iwo floaiing
conditions require equal numbers of grid points but fewer points than the fixed condition:
therefore, the floating conditions are equally economical and are more economical than

the fixed condition.

In all cases, the fact that the fractional difference between Popt and p_ is very small is
evidence of the validity of (15) and of the inequality A <L }\2 (assuming (9) to (11) are
valid). Hence, from (15) and the empirical values of Popr> A, May be estimated. Now

P, ot >> A, where )\3 = 1/7\4, in all cases. Therefore, the assumption leading to (9) to
(11) is justified, that is, that the effect of L is that of a perturbation. Also, the fact that
A, isin all cases larger than )\2 supports the assumption that the range of the eigenvalues
¢{J is small compared with the range of the eigenvalues of L'! These considerations
apply to h = 1. However, as noted in the footnotes of Table 3, when h was set equal to the
small value 0.1 instead of to 1, it was found in Case 1 that Pope WaS reduced to 0.02, a
considerable reduction. Because p, ot << A, in this case, the effect of L can no longer be
a small perturbation, so that (9) to (11) are probably invalid. However, the number of
iterations was 47, which is approximately the same as for h = 1, which was 52.

C- aparison of the numbers of iterations in Table 3 with the corresponding numbers in
:able 1 shows that for the given values of h, the second aigorithm is more economical
than the first. In some cases, the number of iterations is even reduced by an order of
magnitude (for example, Case 10). However, the second algorithm is so sensitive to the
value of h that the situation carn be significantly reversed. For example, for Cases 10 to 1?
in Table 3, no satisfactory convergence was obtainable for h = 2.5; that is, the behavior
was peculiar in that for p = 90 the current appeared to converge after 5000 to 6000 itera-
ti 'ns, but to a value 4 percent lower than that resuiting from the first algorithm. For p on
eit, :. side of 90, however, the iteration number was greater than 25 000, the maximum
allowed. Nevertheless, in all cases shown in Tables 1 and 3, the iteration was assumed to
have converged properly because both algorithms converged to the same value in every case.

Goddard Space Flight Center
National Aeronautics and Space Administration
Greenbeit, Maryland February 19, 1973

188-48-52-05-51
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